

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level-2	Exact Duration :		

106.	The best	indicator	for	titrating	HCl	against	NH_4OH	I is:
------	----------	-----------	-----	-----------	------------	---------	----------	-------

(A) Litmus **(B)** Phenolphthalein

(C) Phenol red (D) Methyl orange

In the titration of $\mathrm{NH_4OH}$ with HCl, the indicator which cannot be used is : 107.

(A) Phenolphthalein **(B)** Methyl orange

(C) Methyl red (D) Both methyl orange and methyl red

2.5 mL of $\frac{2}{5}$ M weak monoacidic base ($K_b = 1 \times 10^{-12}$ at 25°C) is titrated with $\frac{2}{15}$ MHCl in water at 25°C. 108.

The concentration of $H^{\scriptscriptstyle +}$ at equivalence point is : (K $_w$ = 1×10^{-14} at 25°C)

- (A)
- $3.7 \times 10^{-13} \,\mathrm{M}$ (B) $3.2 \times 10^{-7} \,\mathrm{M}$ (C) $3.2 \times 10^{-2} \,\mathrm{M}$ (D)

0.1 M acetic acid solution is titrated against 0.1 M NaOH solution. What would be the difference in pH 109. between $\frac{1}{4}$ and $\frac{3}{4}$ stages of neutralisation of acid?

- $2\log\frac{3}{4}$ (A)
- **(B)** $2\log\frac{1}{4}$ **(C)** $\log\frac{1}{2}$ **(D)**
- 2log 3

A weak acid of dissociation constant 10^{-5} is being titrated with aqueous NaOH solution. The pH at the 110. point of one-third neutralisation of the acid will be:

(A) $5 + \log 2 - \log 3$ $5 - \log 2$

(C) $5 - \log 3$

 $5 - \log 6$ (D)

On adding 0.1 M solution each of [Ag $^+$], [Ba $^{2+}$], [Ca $^{2+}$] in a Na $_2$ SO $_4$ solution, species first precipitated is: 111. $[{\rm K_{sp}BaSO_4} = 10^{-11}, \, {\rm K_{sp}CaSO_4} = 10^{-5}, \, {\rm K_{sp}Ag_2SO_4} = 10^{-5}]$

- (A) Ag₂SO₄
- (B)
- (C)
- (D) All of these

A solution which is 10^{-3} M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with 10^{-16} M sulphide ion. If $\mathrm{K_{sp}}$ of MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which of the following will respect to the followi be precipitated if H₂S is passed in alkaline solution.

- (A)
- (B) MnS
- (C) HgS
- (D) Zns

113. In the following reaction, $AgCl + KI \rightleftharpoons KCl + AgI$

As KI is added, the equilibrium is shifted towards right giving more AgI precipitate, because:

- (A) both AgCl and AgI are sparingly soluble
- **(B)** the K_{sp} of AgI is lower than K_{sp} of AgCl
- the K_{sp} of AgI is higher than K_{sp} of AgCl (C)
- (D) both AgCl and AgI have same solubility product

114. The best explanation for the solubility of MnS in dil. HCl is that :

- (A) Solubility product of MnCl₂ is less than that of MnS
- **(B)** Concentration of Mn^{2+} is lowered by the formation of complex ions
- (C) Concentration of sulphide ions is lowered by oxidation to free sulphur
- (D) Concentration of sulphide ions is lowered by the formation of weak acid H_2S
- $\textbf{115.} \qquad K_{sp}\big(\text{AgCl}\big) > K_{sp}\big(\text{AgBr}\big) > K_{sp}\big(\text{AgI}\big). \text{ This means that :}$

- (A) AgCl is less ionised than AgBr and AgI
- (B) Both AgBr and AgI are less soluble than AgCl
- **(C)** AgI is most soluble
- (D) AgBr is more soluble than AgCl but less soluble than AgI

VMC | Ionic Equilibrium 125 DTS-9 | Level-2